The square-root unscented Kalman filter for state and parameter-estimation
نویسندگان
چکیده
Over the last 20-30 years, the extended Kalman filter (EKF) has become the algorithm of choice in numerous nonlinear estimation and machine learning applications. These include estimating the state of a nonlinear dynamic system as well estimating parameters for nonlinear system identification (e.g., learning the weights of a neural network). The EKF applies the standard linear Kalman filter methodology to a linearization of the true nonlinear system. This approach is sub-optimal, and can easily lead to divergence. Julier et al. [1] proposed the unscented Kalman filter (UKF) as a derivative-free alternative to the extended Kalman filter in the framework of state-estimation. This was extended to parameterestimation by Wan and van der Merwe [2, 3]. The UKF consistently outperforms the EKF in terms of prediction and estimation error, at an equal computational complexity of 1 for general state-space problems. When the EKF is applied to parameterestimation, the special form of the state-space equations allows for an implementation. This paper introduces the squareroot unscented Kalman filter (SR-UKF) which is also for general state-estimation and for parameter estimation (note the original formulation of the UKF for parameter-estimation was ). In addition, the square-root forms have the added benefit of numerical stability and guaranteed positive semi-definiteness of the state covariances.
منابع مشابه
Rotated Unscented Kalman Filter for Two State Nonlinear Systems
In the several past years, Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) havebecame basic algorithm for state-variables and parameters estimation of discrete nonlinear systems.The UKF has consistently outperformed for estimation. Sometimes least estimation error doesn't yieldwith UKF for the most nonlinear systems. In this paper, we use a new approach for a two variablestate no...
متن کاملEstimation of LOS Rates for Target Tracking Problems using EKF and UKF Algorithms- a Comparative Study
One of the most important problem in target tracking is Line Of Sight (LOS) rate estimation for using from PN (proportional navigation) guidance law. This paper deals on estimation of position and LOS rates of target with respect to the pursuer from available noisy RF seeker and tracker measurements. Due to many important for exact estimation on tracking problems must target position and Line O...
متن کاملAn Adaptive Square Root Unscented Kalman Filter Approach for State of Charge Estimation of Lithium-Ion Batteries
An accurate state of charge (SOC) estimation is of great importance for the battery management systems of electric vehicles. To improve the accuracy and robustness of SOC estimation, lithium-ion battery SOC is estimated using an adaptive square root unscented Kalman filter (ASRUKF) method. The square roots of the variance matrices of the SOC and noise can be calculated directly by the ASRUKF al...
متن کاملReal Time Calibration of Strap-down Three-Axis-Magnetometer for Attitude Estimation
Three-axis-magnetometers (TAMs) are widely utilized as a key component of attitude determination subsystems and as such are considered the corner stone of navigation for low Earth orbiting (LEO) space systems. Precise geomagnetic-based navigation demands accurate calibration of the magnetometers. In this regard, a complete online calibration process of TAM is developed in the current research t...
متن کاملEfficient derivative-free Kalman filters for online learning
The extended Kalman filter (EKF) is considered one of the most effective methods for both nonlinear state estimation and parameter estimation (e.g., learning the weights of a neural network). Recently, a number of derivative free alternatives to the EKF for state estimation have been proposed. These include the Unscented Kalman Filter (UKF) [1, 2], the Central Difference Filter (CDF) [3] and th...
متن کامل